

 Navigation

 	
 index

 	
 next |

 	Remote Worker Server 1.6.0 documentation

Remote Worker Server

[image: travis] [https://travis-ci.org/mozilla-services/remote-worker-server] [image: Documentation Status] [http://remote-worker-server.readthedocs.org/en/latest/]

Remote Worker Server is a service that handles signaling for the
Firefox Remote Worker WebRTC data channel setup.

	Online documentation [http://remote-worker-server.readthedocs.org/en/latest/]

	Issue tracker [https://github.com/mozilla-services/remote-worker-server/issues]

	Contributing [http://remote-worker-server.readthedocs.org/en/latest/contributing.html]

Table of content

	Rationale
	Philosophy

	Installation
	Distribute & Pip

	Install Redis

	Getting started
	Run locally

	Run tests

	API specifications
	Authentication

	Client endpoint

	Worker endpoint

	Errors

	Glossary

	Contributing
	Run tests

	Definition of done

	CHANGELOG
	0.2.0 (unreleased)

	0.1.0 (2015-04-15)

	Contributors

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2015, Mozilla Services — Da French Team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Remote Worker Server 1.6.0 documentation

Rationale

The remote worker server is a signaling service helping client-side user agents
(local workers) to connect to gecko instances running in the cloud (remote
workers).

The goal of the remote worker server is to connect clients with
remotely-running gecko instances, in order to execute javascript workers code
in a distant way.

On the gecko side, the code will be ran in a service worker.

Philosophy

The message broker doesn’t handle the message passing between the
Firefox Client and the Firefox headless server, but does the preliminary work
(WebRTC data channel setup) to make this happen. Once the connection is setup,
gecko talks directly with the clients using a WebRTC peer connection.

On startup, all geckos registers on the server and wait for clients to connect.

On the client side, local workers send an URL that should be run remotely, as
well as a Firefox Accounts authentication information.

One Firefox Account will always be tied to one remote gecko instance.

As soon as the WebRTC data channel is up, the remote worker server
connection is closed and the following exchanges are made P2P using
the WebRTC data channel.

 Copyright 2015, Mozilla Services — Da French Team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Remote Worker Server 1.6.0 documentation

Installation

By default, Remote Worker Server uses Redis [http://redis.io/] for
both cache, task queuing and message passing.

Distribute & Pip

Installing Remote Worker Server with pip in a python3 environment:

pip install remote-worker-server

Install Redis

Linux

On debian / ubuntu based systems:

apt-get install redis-server

or:

yum install redis

OS X

Assuming brew [http://brew.sh/] is installed, Redis installation becomes:

brew install redis

To restart it (Bug after configuration update):

brew services restart redis

 Copyright 2015, Mozilla Services — Da French Team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Remote Worker Server 1.6.0 documentation

Getting started

Once storage engines and python dependencies have been installed, it’s is
easy to get started!

Run locally

By default, remote-worker-server persists its records inside a Redis [http://redis.io/] database, so it has to be installed first (see the
“Install Redis” section below for more on this).

You will also need to have a Python 3.4 running.

The server

make serve

Add a fake worker

make mock_worker

Connect a fake client

make mock_client

Run tests

make tests

 Copyright 2015, Mozilla Services — Da French Team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Remote Worker Server 1.6.0 documentation

API specifications

	Authentication
	OAuth Bearer token

	Firefox Account
	Obtain the token

	Client endpoint
	Websocket endpoint

	Creating a new worker
	Hello fields

	Sending ICE Candidates
	ICE Candidate fields

	Candidate object fields

	Receiving errors

	Receiving WebRTC Answer

	Receiving Gecko ICE Candidates

	Worker endpoint
	Websocket endpoint

	Registering the gecko
	Hello fields

	Answering new worker demands
	Receiving new worker demands

	Answering with errors

	Answering with WebRTC Answer

	Sending ICE Candidates
	ICE Candidate fields

	Candidate object fields

	Sending the connected status

 Copyright 2015, Mozilla Services — Da French Team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Remote Worker Server 1.6.0 documentation

 	API specifications

Authentication

The authentication is using Firefox Accounts, to verify
the OAuth2 bearer tokens on a remote server

OAuth Bearer token

Use the OAuth token with this header:

{
 "authorization": "Bearer <oauth_token>"
}

	notes:	If the token is not valid, this will result in a INVALID_TOKEN error response.

Firefox Account

Obtain the token

XXX: Endpoint still to be done.

The GET /v1/fxa-oauth/params endpoint can be used to get the
configuration in order to trade the Firefox Account BrowserID with a
Bearer Token. See Firefox Account documentation about this behavior [https://developer.mozilla.org/en-US/Firefox_Accounts#Firefox_Accounts_BrowserID_API].

$ http GET http://localhost:8000/v0/fxa-oauth/params -v

GET /v0/fxa-oauth/params HTTP/1.1
Accept: */*
Accept-Encoding: gzip, deflate
Host: localhost:8000
User-Agent: HTTPie/0.8.0

HTTP/1.1 200 OK
Content-Length: 103
Content-Type: application/json; charset=UTF-8
Date: Thu, 19 Feb 2015 09:28:37 GMT
Server: waitress

{
 "oauth_uri": "https://oauth-stable.dev.lcip.org",
 "scope": "remote-worker-server"
}

 Copyright 2015, Mozilla Services — Da French Team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Remote Worker Server 1.6.0 documentation

 	API specifications

Client endpoint

Websocket endpoint

Requires authentication

Clients connects the websocket directly on /

ws://localhost:8765/

Creating a new worker

In order to ask for a worker creation, the client need to send this first message:

{
 "messageType": "hello",
 "action": "client-hello",
 "authorization": "Bearer <oauth token>",
 "source": "<worker_js_url>",
 "webrtcOffer": "<sdp-offer>"
}

Hello fields

	messageType: hello

	action: client-hello

	authorization: Bearer token

	source: The worker JavaScript code URL

	webrtcOffer: The WebRTC SDP offer

Sending ICE Candidates

Once the Hello has been sent client can start to send ICE Candidates.

{
 "messageType": "ice",
 "action": "client-candidate",
 "candidate": {
 "candidate": "candidate:2 1 UDP 2122187007 10.252.27.213 41683 typ host",
 "sdpMid": "",
 "sdpMLineIndex": 0
 }
}

ICE Candidate fields

	messageType: ice

	action: client-candidate

	candidate: A candidate object

Candidate object fields

	candidate: The candidate content

	sdpMid: The candidate mid

	sdpLineIndex: The SDP Line Index

Receiving errors

In case the gecko is not available or was not able to start the
worker, an error will be returned.

{
 "messageType": "worker-error",
 "workerId": "<worker-id>",
 "errno": "<worker error number>",
 "reason": "<error reason>"
}

Receiving WebRTC Answer

If everything worked, the gecko answer will be sent back:

{
 "messageType": "hello",
 "action": "worker-hello",
 "workerId": "<Worker ID >",
 "webrtcAnswer": "<Gecko WebRTC Answer>"
}

Receiving Gecko ICE Candidates

In order to setup the WebRTC data channel, you may receive the Gecko
ICE Candidates.

{
 "messageType": "ice",
 "action": "worker-candidate",
 "candidate": {
 "candidate": "candidate:2 1 UDP 2122187007 10.252.27.213 41683 typ host",
 "sdpMid": "",
 "sdpMLineIndex": 0
 }
}

 Copyright 2015, Mozilla Services — Da French Team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Remote Worker Server 1.6.0 documentation

 	API specifications

Worker endpoint

Websocket endpoint

Worker connects the websocket on the /worker path.

ws://localhost:8765/worker

Registering the gecko

The first thing to do is to register the gecko server.

{
 "messageType": "hello",
 "action": "worker-hello",
 "geckoId": "<gecko-id>"
}

Hello fields

	messageType: hello

	action: worker-hello

	geckoId: The unique gecko identifier (should stay the same accross restarts)

Answering new worker demands

Receiving new worker demands

As soon as the gecko is register it will start to receive worker
creation demands, of the form:

{
 "messageType": "new-worker",
 "userId": "<Firefox Account UserID>",
 "workerId": "<Generated Worker UUID>",
 "source": "<worker JS code source URL>",
 "webrtcOffer": "<client sdp-offer>"
}

When receiving this kind of request, the gecko-server should try to
start the worker.

Answering with errors

In case of errors, the response should looks like:

{
 "messageType": "worker-error",
 "workerId": "<worker-id>",
 "errno": "<worker error number>",
 "reason": "<error reason>"
}

Answering with WebRTC Answer

If the Gecko was able to start the worker, it should answer with:

{
 "messageType": "worker-created",
 "workerId": "<worker-id>",
 "webrtcAnswer": "<gecko WebRTC answer>"
}

Sending ICE Candidates

Once the Answer has been sent, gecko can start to send ICE candidates.

{
 "messageType": "ice",
 "action": "worker-candidate",
 "candidate": {
 "candidate": "candidate:2 1 UDP 2122187007 10.252.27.213 41683 typ host",
 "sdpMid": "",
 "sdpMLineIndex": 0
 }
}

ICE Candidate fields

	messageType: ice

	action: worker-candidate

	candidate: A candidate object

Candidate object fields

	candidate: The candidate content

	sdpMid: The candidate mid

	sdpLineIndex: The SDP Line Index

Sending the connected status

Gecko is responsible to close the connection as soon as the WebRTC
data channel is up.

This is done sending this final standza:

{
 "messageType": "connected",
 "workerId": "<worker id>"
}

 Copyright 2015, Mozilla Services — Da French Team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Remote Worker Server 1.6.0 documentation

Errors

 Copyright 2015, Mozilla Services — Da French Team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Remote Worker Server 1.6.0 documentation

Glossary

	WebRTC

	A protocol to enable P2P connection in the browser (For audio, video and data)

	Firefox Accounts

	Account account system run by Mozilla (https://accounts.firefox.com).

	ICE Candidates

	A potential IP that can be use to let the other party reach us.

 Copyright 2015, Mozilla Services — Da French Team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Remote Worker Server 1.6.0 documentation

Contributing

Run tests

make tests

Run a single test

For Test-Driven Development, it is a possible to run a single test case, in order
to speed-up the execution:

nosetests -s remote_server.tests.functional_tests:ClientServerTestCase.test_when_gecko_answers_an_offer_client_receives_it

Definition of done

	Tests pass;

	Code added comes with tests;

	Documentation is up to date.

 Copyright 2015, Mozilla Services — Da French Team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Remote Worker Server 1.6.0 documentation

CHANGELOG

This document describes changes between each past release.

0.2.0 (unreleased)

	Nothing changed yet.

0.1.0 (2015-04-15)

	Add handler for Gecko Headless websockets.

	Add handler for Client websockets.

	Handle Gecko reconnection.

	Handle Client WebRTC Offer and ICE Candidate.

	Handle Gecko WebRTC messages.

	Add documentation.

 Copyright 2015, Mozilla Services — Da French Team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	Remote Worker Server 1.6.0 documentation

Contributors

	Fabrice Desré <fabrice@mozilla.com>

	Rémy Hubscher <rhubscher@mozilla.com>

	Mathieu Leplatre <mathieu@mozilla.com>

	Alexis Metaireau <alexis@mozilla.com>

	Tarek Ziade <tarek@mozilla.com>

 Copyright 2015, Mozilla Services — Da French Team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	Remote Worker Server 1.6.0 documentation

Index

 F
 | I
 | W

F

 	

 	Firefox Accounts

I

 	

 	ICE Candidates

W

 	

 	WebRTC

 Copyright 2015, Mozilla Services — Da French Team.
 Created using Sphinx 1.2.2.

 _static/file.png

_static/minus.png

_static/down-pressed.png

_static/comment.png

_static/comment-close.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/down.png

_static/plus.png

search.html

 Navigation

 		
 index

 		Remote Worker Server 1.6.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Mozilla Services — Da French Team.
 Created using Sphinx 1.2.2.

_static/up.png

_static/up-pressed.png

